第12回リフレッシュ理科教室

＜九州支部福岡会場＞

— 自然を見る Part II —

主催：(社)応用物理学会、福岡市立少年科学文化会館
企画実行：応用物理学会九州支部
後援：福岡市教育委員会、福岡市小学校理科研究委員会

福岡市小学校理科研究会、福岡市中学校理科研究会

開催：2008年8月2日(土曜日)、3日(日曜日)

開催場所：福岡市少年科学文化会館、あいれふ

（福岡市中央区舞鶴2丁目5-27 電話092-771-8861）
第12回リフレッシュ理科教室

＜九州支部福岡会場＞

— 自然を見る Part II —

主催：（社）応用物理学会、福岡市立少年科学文化会館
企画実行：応用物理学会九州支部
後援：福岡市教育委員会、福岡市小学校理科研究委員会
福岡市小学校理科研究会、福岡市中学校理科研究会
開催：2008年8月2日（土曜日）、3日（日曜日）
開催場所：福岡市少年科学文化会館、あいれふ
（福岡市中央区舞鶴2丁目5-27 電話 092-771-8861）
目次

応用物理学会からのご挨拶
「リフレッシュ理科教室」の開催にあたって
応用物理学会 教育・公益事業委員長 渡辺 和雄 1
第12回リフレッシュ理科教室（九州支部福岡会場）ご挨拶
応用物理学会 九州支部支部長 藤山 貫 2
福岡市少年科学文化会館からのご挨拶
リフレッシュ理科教室の開催にあたって
福岡市少年科学文化会館 館長 濱戸 京一 3

プログラム .. 4

講演
太陽と月がつくるスペクトラム 皆既日食一
福岡教育大学名誉教授 平井 正則 .. 6

自然観察における最近の光学機器の活用工夫
デジタルカメラの上手な使い方
オリンパス(株)研究開発センター 榊田 博文 13

実験工作
顕微鏡
香野 淳 福岡大学理学部 ... 25
エレクトロ万華鏡
原一広 九州大学大学院工学研究院 27
光を分解してみよう
永田 深文 福岡大学理学部 ... 33
明るさを測ってみよう
赤星 信 福岡大学理学部 ... 37

安全の指針 38

講師プロフィール ... 39

実行委員およびご協力いただいた方々、団体 40
「リフレッシュ理科教室」の開催にあたって

社団法人 応用物理学会 教育・公益事業委員会 委員長
渡辺 和雄
（東北大学 金属材料研究所 教授）

＜小中学生のみなさんへ＞

みなさんは毎日学校や家庭の生活の中で、身近に起こる自然現象を不思議に思ったりしていませんか。なぜ虹は七色になるんだろう、なぜ台風が生まれるのだろう、どうして太陽は燃えているのだろうなど自然には不思議なことがたくさんあります。また、みなさんのまわりにある私たち人類が発明した飛行機はどうして空を飛べるのだろう、テレビはどうして映るのだろう、電話はどうして聞こえるのだろう、冷蔵庫はなぜ冷えるのだろうなど、たくさん分からないことを見つけていることでしょう。

みなさんのこのような疑問や興味は、とても大事なことです。この疑問に「なるほど、そういうことか」と答えてくれるのが「理科」なのです。理科への興味は、すばらしい知識を増やして、また、自分で工夫していろいろなものを作るという力をつけてくれます。理科の知識をもとに、工作することは大変楽しいことです。聞いたり学んだりしたことが、実際に目前にできあがってくるのはとてもわくわくします。

リフレッシュ理科教室では、みなさんが「楽しいな、おもしろいな」と思えるような、いろいろなモノ作りや工作実験を主催しています。最初は不安かもしれませんが、まず、自分の手を使って、いろいろなモノを作ることの楽しさを体験し、自分でも作ることができるように経験を、ぜひ味わってみてください。

＜教師・保護者の皆様へ＞

昨今の「若者の理科離れ」は、技術立国を目指して進んできた日本の将来を根本から危うくしかねない問題です。教育・公益事業委員会においては、この傾向を減少し改善し、逆に「理科が大好き」となるような次世代を育成する若者を増やすことを目的に、「リフレッシュ理科教室」を実施しております。これは実験工作を主体とした催しで、若者を指導する先生方に、まずご自身で、「理科」の楽しさを体験し、実際の学校教育の現状で活用していただくとともに、その実践の場として児童、生徒対象の理科工作教室にご協力頂き、学会幹事と一緒に若者の理科好きの若者を育てていくことを目的としております。

つきましては、この催しを通じて、先生方は勿論、保護者の皆様も子供たちが作る工作について、一緒に楽しみ、一緒に考えて、共通の体験をしていただき、次世代を肩負う若者たちの理科への関心を少しでも高めていただければと思っております。
第12回リフレッシャ理科教室（九州支部福岡会場）
ごあいさつ

応用物理学会 九州支部長
藤山 寛（長崎大学大学院生産科学研究科・教授）

応用物理学会は、現在約24,000名の会員を有する国内屈指の大きな学会です。本学会の特徴は、企業会員が約半数を占めるという会員構成にあり、学理の追求のみならず応用にも重点を置いた研究が企業、大学を問わず数多く発表されてきました。例えば最近では、信号や照明に革命的変化を起こしつつある青色LED（発光ダイオード）や新素材CNT（カーボンナノチューブ）など、社会に大きなインパクトを与える多くの優れた研究成果が応用物理学会から発信されています。

このように、科学技术立国日本を支えてきた応用物理学会ですが、近年の「高校生の理科離れ、工学離れ」が大学の工学部、理学部への志望者の低下を招き、結果として製造業への有能な人材供給不足が顕在化してきております。このままでは日本が科学技術で世界に貢献し続けることが危うくなっています。このような事態を招いた原因はいろいろ指摘されていますが、少なくとも私は「子供たちが理科好きである」ことを疑ってはおりません。

リフレッシャ理科教室は、12年前に応用物理学会九州支部で初めて開催され全国に拡がりました。この福岡会場がそのルーツです。理科好きな子供たちを育てるためには理科好きな先生による面白い授業が不可欠であると思い、地元の教育委員会等のご協力を得て、小中学校の先生やご父兄の皆様に理科の面白さをお伝えする授業を毎年継続して開催してまいりました。その経験から「子供たちは今も昔も理科好きである」と思うわけです。このリフレッシャ理科教室で、先生ご自身が「理科」の楽しさを体験し、実際の学校教育の現場で活用していただけましたら幸いです。
リフレッシュ理科教室開催にあたって

福岡市立少年科学文化会館
館長 須賀 一

福岡市立少年科学文化会館は、少年の教養の向上と涵養を図り、その健全な育成に寄与することを目的として、福岡市が設置した教育施設です。昭和46年5月開設以来子どもの科学、文化に関する楽しい活動の場として積極的な利用と事業目的の実現を目指しています。

科学技術白書の中で、若者達の中にいわゆる「理科離れ」がおきているとの問題提起がなされましたが、資源の乏しい我が国にとって、これは大きな問題であるとの認識に立ち、様々な科学技術振興のための施策が講じられてきました。子どもの理科や科学技術に興味や関心を示さなくなった背景として、身の回りの製品が高機能化され、製品を分解しても電気基盤があるだけで、ものの仕組みが見えないなどのブラックボックス化や、手作りでものを作る機会が少なくなったことなど、科学技術が発展した現代の社会状況が指摘されています。

このような課題解決のためのひとつつの方法として、リフレッシュ理科教室では、理科の先生方が理科の楽しさを見つめ直す機会を設けます。人間は本来好奇心旺盛なものですから、子ども一人一人の知的好奇心を引き出し、意欲的な活動を生み出す授業のヒントになれば幸いです。また小中学生のみなさんも、手作りでものを作る楽しさを体験してもらい、理科のおもしろさを知ってもらいたいと思います。

最後になりましたが、リフレッシュ理科教室を開催するにあたり、応用物理学会の方々の多大なる御協力をこの場をお借りしてお礼申し上げます。
プログラム

第1部（8月2日）
会場：あいれふ 講堂
対象：小学校教論、中学校教論、一般
12:30～ 受付
13:00 開会
13:00-13:10 挨拶
＜座長：永田 潔文（福岡大学）＞
13:10-14:10 講演
「太陽と月がつくるスペクトラルは皆日食－」
福岡教育大学名誉教授 平井 正則
14:10-15:00 講演
「自然観察における最近の光学機器の活用工夫」
オリンパス（株）研究開発センター 榊田 博文
15:00-15:15 楽しい実験工作の紹介
15:15-15:30 休憩（会場移動）
会場：少年科学文化会館3階各教室
15:30-16:45 楽しい実験工作のワークショップ
リフレッシュ理科教室実行委員会
テーマ
1.顕微鏡
2.エレクトロ万華鏡
3.光を分解してみよう
4.明るさを測ってみよう
第2部（8月3日）

<table>
<thead>
<tr>
<th>テーマ名</th>
<th>工作場所</th>
<th>時間</th>
<th>人数</th>
<th>担当責任者</th>
</tr>
</thead>
<tbody>
<tr>
<td>显微鏡</td>
<td>3階 視聴覚室</td>
<td>45分</td>
<td>20名</td>
<td>香野 淳、荒木 夕実</td>
</tr>
<tr>
<td>エレクトロ光學鏡</td>
<td>3階 音楽室</td>
<td>45分</td>
<td>20名</td>
<td>原 一広、永田 裕二</td>
</tr>
<tr>
<td>光を分解してみよう</td>
<td>3階 絵画室</td>
<td>45分</td>
<td>20名</td>
<td>永田 淳文、福原 智恵子</td>
</tr>
<tr>
<td>明るさをはかってみよう</td>
<td>3階 第1科学実習室</td>
<td>45分</td>
<td>20名</td>
<td>赤星 信、真子 茂孝</td>
</tr>
</tbody>
</table>

時間割

8月3日

第1回目 10:00-10:45
第2回目 11:30-12:15
第3回目 13:15-14:00
第4回目 14:45-15:30

開始の20分前に受付（3階エレベータ横）で、先着順に整理券を発行します
はじめに
太陽（8大惑星を支配する星）
月（小学校新理科学習指導要領に復活する「月」）
「影ふみ」から「日食」まで
「でっかいどお・・・月の影」
影の大きさと移動
宇宙の七不思議
「なぜ、太陽と月のみかけの大きさは同じなの？」
まとめ
勉強のための参考資料
太陽（8大惑星を支配する星）

太陽系
太陽
地球型惑星 水星・金星・地球・火星
木星型惑星 木星・土星・天王星・海王星
準惑星 小惑星セレス・冥王星・エリス
小惑星
カイパーベルト天体
太陽系小天体
オールト雲（彗星だまり）?

太陽重力圏 →地球の33万倍もの質量のうみだす重力の支配する世界
ようす→遠くに行くほど（距離の2乗）弱くなる引力
質量の大きい天体ほど強く働く引力
（ニュートンの万有引力の法則）
すべての惑星は公転にともなう遠心力と太陽重力が釣り合っている。
もちろん、各天体も質量に応じた万有引力により形作られる。
質量があるほど大きいと引力の性質（常に重心と逆向き）から球形になる。
→比較的小さな質量の固体天体はいびつな形（たとえば、小惑星「いとかわ」）
　＊ 惑星の定義についての学術的な議論
　＊ 太陽系の構造や太陽系形成史に関係
月（小学校新理科学習指導要領に復活する「月」）

「月」についての＜復習＞

月の基本データ

月の大きさ（半径）1,738 km（0.3 地球半径）
補）地球半径 6,378 km 太陽半径 69 万 5500 キロ
月までの距離（月の軌道平均半径）38,440 キロ（0.003 天文単位）
遠地点 40,496 キロ～近地点 36,3304 キロ
補）地球の太陽を回る公転半径を 1 天文単位と呼び、1 天文単位 = 1 億 4960 万キロ（遠日点 1,471 億キロ（夏）～近日点 1,521 億キロ（冬））
月の公転周期 1 恒星月 27.32 日
補）地球の公転周期 365.2422 日
補）1 朔望月（新月から新月） 29.53 日
黄道に対する月の軌道傾斜角 5° 8′

用語）天文学では天球上の太陽の通る道を黄道（こうどう）、月の通る道（白道）と呼ぶ。
○地球から見た月のみかけの大きさ
 月の直径 x 月までの平均距離 = (1,738 x 2) / (384,400) x (180° / π) = 0.52°
補）地球から見た太陽のみかけのおおきさ (695,500 x 2/149,600,000)(180° / π) = 0.53°
いずれも手を伸ばした時の爪の大きさより小さい！
○月の形の変化
 「菜の花や月は東～日は西へ」（与謝蕪村）
問1 1 日のうちで何時頃説んだ仮ですか？ 太陽の天球上の位置によって時刻を知る
問2 月はどんな形だったでしょう？ 太陽と月の位置から形が決まる。
○月の形の種類
 新月（見えない。朔（さく）と呼ぶ）・三日月・上弦（こうげん）・満月・下弦（かげん）・新月
 また、満月は十五夜月、望月（もちづき）、十六月（いざよいづき）、立ち待つ月、居待ち月（いまちづき）、二十日月、二十日余り月、有明月という呼び名がある。
○月の形の変化と時刻
 新月→正午 三日月→午後 上弦→夕方（日没）満月→夜半 下弦→朝方（日の出）と形が変わると南中時刻（南の子午線を東から西に通過する）変わる。
詳しくは、月は 1 日に 360° / 29.53 日 = 約 12°（月の出は毎日、時間で 49 分遅れる）東へ移動する。太陽に照らされた月を見る位置（太陽と月の離隔）によって形が違って見える。
〇月の表面の様子
また、月は自転と公転が同じなのでいつも同じ月面しか見えない。（いつもうさぎはもちをついている）
月面の特徴は肉眼で「ウサギの持ちつきの姿」に見えるように大きな海（ガリレオがそう呼んだといわれる）と呼ばれる灰色の円形の部分と望遠鏡で喰くとわかる無数の大小クレーターが見える。天球の南（南の空にある月の下側）には山とたくさんのクレーターが見え、海が少ない。

小学校新学習指導要領と移行措置について
平成24年度から新学習指導要領の改定されるため平成21・22年度移行措置が行われる。
そこで地学に関する理科新内容あるいは移動について点検する。
理科B区分「清明と地球」
第4学年
(3) 天気の様子
ア 1日の気温の変化（5年より移動）
第5学年
(4) 天気の変化
ア 雲と天気の変化（追加）
第6学年
(5) 月と太陽
ア 月の形と太陽の位置
イ 月の表面の様子
"理科の目標"「…自然を愛する心情を育てるとともに、自然の事物・現象についての実感を伴った理解を図り、科学的な見方や考え方を培う。
ことが要部となる。そこで、
〇実感をもつには日本の月衛星「かぐや」の撮影した月面写真を見せる。（NHKで配信）
これには月の地名（海の名前、クレーターの名前、月面図の勉強が必要）
参考書物 全天星図（星図には必ず月面図、望遠鏡の使い方の記事が掲載されている）
天文関連月刊誌など（参考文献参照）
〇実際に夜庭で児童と望遠鏡で月を観望する必要があるだろう。
美しい月、クレーターの観察の時期は冬の夕方の上弦を中心に1週間くらいだろう。（夏はまだ空が明るく観ててももしくならない！）
指導のための望遠鏡の使い方の注意点。
みかげの大きさは約30分角（手を伸ばして親指の爪より小さい）。これを1°（手を伸ばして開いた手より大きい）くらいの大きさにみるには2倍以上に拡大しなければならない。
そこで、双眼鏡を使うとふつうの視野は7°くらいで、喰くと視野の1/14くらいであまり面
白くない。
そこで望遠鏡を使おう。しかし、望遠鏡はつう倍率が50倍くらい（1200mmで25mm
のアイピースだと1200/25=48倍〜50倍）で今度は拡大しすぎて月の一部しか見えない。（アイピースを観いた視野1°ていうとから、月の50分の1なり、0.6分角が視野一杯に
広がる）

月は1日に12°動くから、毎時0.5°つまり月ひとりつ分動く。50倍で月を見ていると視
野が0.6分角しかないながら、月が（0.5°/60分）毎分0.5分角移動するので、1.2分（=0.6/0.5）
すると視野を出る。先生はひとりの児童が見終わると、また、月を視野中心に入れなおす
必要がある。（経緯台の場合）でも児童の見通しはほとんどの動きで見えない月が
望遠鏡では見える間に動いているのに感動するだろう！（望遠鏡の架台には経緯台と赤道儀の2
種がある。赤道儀には自動と手動と2種ある。いずれも高価である）

「影ふみ」から「日食」まで

昔？！の小学校理科の内容は。
1年生で「影ふみ」から出発する。
→午前中の授業と給食後の午後の「影ふみ」遊びから児童は昼間「影ふみ」が難しいこと
に気付く！
→お日さまは天空の低いところから高いところに移動することを知る。
→影から光の性質を知る。
→日陰と日なたの温度の違いから、関心の強い生活の中の寒暖、天気変化を整理できる。
→時間スケール（1年間）の大きい天候変化から四季を認識する。
→1年の太陽高度変化と四季の原因が地軸の傾きに関係すること知って中学へ進学する。
「自然観察とその科学的理論は大気的な視点から解決されといその科学的手法を学ぶ」
（明日の天気予報はなかなか当たらないが年間の四季の到来は予報できるという意味
（そして、その原因は地球の公転と地軸の傾きだと気付く）

（以降、小学校理科学習指導要領の問題点を指摘します。）
2009年7月22日の皆既日食は児童にとって月や地球のような天文現象を体験する絶好の機会です。
是非、利用しましょう。
そこで日食の勉強をします。
まず
太陽系の天体現象ではしばしば天体の影話題になります。
天文分野での食現象について復習します。
水星・金星の日面通過
日食
月食
木星の衛星による食
土星の衛星による食
天文学上重要な月の隠蔽（えんぺい）あるいは惑星食や月食
小惑星のと恒星の食
食変光星
など
日食→皆既食と金環食
日食の歴史やエピソードなど
日を食べると書く日本語「日食」のルーツのお話

「でっかいどお・・・月の影」

以下は2009年7月22日の日食を例に考えます。
地面を巨大な月影が猛スピードで地球を半周する！
パソコン画像で2009年7月22日の日食を再現します。
日食の起こる条件について
「影の構造と移動について」
どのくらい珍しいか？
毎年の日食回数 最大4回、最小2回 月食より多い
しかし、
特徴 日食は地球に月の影の落ちる場所でしか経験できない
皆既日食→ひとつの場所で起こる頻度は340年に1回（ある人の計算）
→人生80年としても）4世代
息子・孫・曾孫・曾曾孫
影の大きさと移動
スライドで紹介します。

宇宙の七不思議

「なぜ、太陽と月のみかけの大きさは同じなの？」

月の大きさ、月までの距離は深く太陽系の歴史と関わっているようです。
太陽系の構造と進化の話を現代天文学の成果をふまえて紹介します。
ここまでの話をもとに質問をします。
月面で日食（地球が太陽をかくす）はどうみえるのだろうか？
附）月から見た地球にみかけの大きさは？

\[2 \times 6378/484400 \times \frac{180^\circ}{\pi} = 1.90^\circ \]
（地球は月の約3倍大きいから）

月から見た太陽のみかけの大きさ～地球から見て大きさ0.27°
では、月で見る日食は？（太陽をかくす地球はどんなだろう？）
その時、地球ではどう見えるのか？（地球の影が月面に落ちる！）

まとめ

勉強のための参考資料

○日食予報など
「理科年表」国立天文台編丸善株式会社
「天文年鑑」恒星社
○パソコンで現象を再現できる
「ステラーナビゲーター」CDソフトアストロアーツ社
○書店で各月に読める雑誌
月刊誌「星ナビ」「天文ガイド」「月刊天文」「Sky & Telescope」（洋雑誌）
「古天文学の散歩道」斎藤国治著（恒星社）ちょっと古い
○ウェブで探索
国立天文台ホームページ
（国立天文台ホームページから入れる全国の科学館ホームページ）
自然観察におけ 1. カメラの選び方

はじめに

- 初心者（〜中級者）向け
- 目標: い な し を 将 な が ら、や っ て み よ う か な。
- カメラの紹介機種はオリンパスばかり、ご了解を
- 自己紹介
 - 1984年オリンパス光学工業㈱（現オリンパス㈱）入社
 - カメラ、ビデオカメラ、電子カメラの光学系開発に従事
 - レンズ設計歴約20年
 - 現在、光学技術開発を担当する部署のマネージャー
 - オリンパスわくわくPJ 代表（ボランティア）
 - 趣味は、写真と釣り

1. カメラの選び方（1）

- フィルムカメラ
 - フィルムを現像、引き伸ばし、写真になるまでに時間とお金
 - 過去のものになりつつある
- デジタルカメラ☆これしかない！
 - 携帯して色々に活用、送信もランニングコスト安い

1. カメラの選び方（2）

- コンパクト（デジタル）カメラ
 - レンズ交換できず、背面液晶ファインダー
 - 小型軽量（ポケットに入る）
 - お手頃価格
 - 初心者にも使い易い
- （デジタル）一眼レフ☆人気急上昇中
 - レンズ交換ができ、光学ファインダー
 - 高画質
 - 高機能（シャッターチャンス、高速連写）
 - 豊富なレンズ群

2. デジタルカメラとは（構成）〜中級

- レンズ+イメージャ+画像エンジン+メモリカード
 - レンズ → 広角、望遠、ズーム、マクロ、明るいなど様々
 - イメージャ → 画素数、CCD、CMOS（こちらが主流に）
 - 画像エンジン → 各社独自（DIGIC、TruePic等）
 - メモリカード → 色々な規格（SD、CF、XD等）
 - 画像フォーマット → JPEG（画素数、圧縮率）、RAW

画像エンジン メモリカード
2. デジタルカメラとは（構造）－中級

・コンパクトの構造

・一眼レフの構造

2. デジタルカメラとは（プリント）

・お店プリント
 - メモリーカード持って行って、お店に依頼
 - 常においしいプリンター、大きい写真OK
 - アルバムサービスもあり
 - データ保存（CD、DVD、メモリーカード）

・自分でプリント
 - パソコン＋プリンターを使って、自分でプリント
 - 自分の思うように設定、画像加工
 - プリンタ不足多し、サイズは通常A4まで
 - データ保存（パソコン内HDD、CD、DVD）

3. カメラの基礎知識（1）

・シャッター速度と絞り値
 - 写真を撮るには適切な光の量が必要
 - 光の量は、物体明るさ×絞り値×シャッター速度
 - 絞り値×シャッター速度は茶筒のよう

3. カメラの基礎知識（2）

・シャッター速度（s-秒）
 - 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, ...

・絞り値（FNO＝f/φ）
 - 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, ...

3. カメラの基礎知識（レンズ編1）

・焦点距離で画角が決まる（mm相当）
 - 28mm, 50mm, 100mm,
 - 望遠: 75°, 50°,
 - 望遠レンズは焦点距離が変化する

・FNOで、最小絞り値が決まる
 - 1.4, 2, 2.8, 4, 5.6, 8, 11, 16
 - 1.4, 2, 2.8, 4, 5.6, 8, 11, 16
 - 1.4, 2, 2.8, 4, 5.6, 8, 11, 16

3. カメラの基礎知識（レンズ編2）

- ビントはある距離になじかない
- ビントの合う距離範囲を被写界深度と言う
4. 写真の撮り方

写真を撮るときの7要素
①被写体の選択（何を撮りたいか）
②レンズの選択
③絞りとシャッター速度（＋ストロボ）の選択
④フレーミング（切り取り方）
⑤ピント合わせ
⑥手ぶれしないよう
⑦シャッタータイミング

①被写体の選択（何を撮りたいか）
- 記念写真
- 女性・子供
- 風景・花
- 記録

何を伝えたいかが重要
- 記念写真 - この楽しい雰囲気、厳粛な感じなど
- 女性・子供 - 美しさ、かわいらしさなど
- 風景 - 雄大な自然、花の美しさなど
- 記録 - 正確記録になど

②レンズの選択
- 広角レンズは広い範囲が撮れる
- 望遠レンズは近寄れないとき大きく拡大できる
- 明るいレンズ（FNO小）は有利
- 近接撮影にはマクロレンズ

焦点距離は35mmフィルム換算（昔のフィルムカメラ用レンズに換算した値）で呼ぶことが多い。
広角: 28mm, 35mm, 50mm, 85mm, 望遠

- 広角レンズ
- 望遠レンズ
- 近寄れないとき
- 大きく拡大
- ピント浅い
- プレやすい
ポートレート

85mmくらいのレンズで自然に
バックもきれいにボカせる

マクロレンズ

近接撮影で拡大できる

③シャッター速度と絞り値の選択

・ 動きを止めたいときは高速シャッター
・ 動きを表現したいときは低速シャッター
・ 手持ちだと1/15秒が限界
・ 絞りを開くと前後にボケる
・ 絞りを絞るとピント合う範囲が拡大
・ シャッター速度と絞り値はトレードオフ
・ どうしても暗ければストロボ使う
高速シャッター
動きを止める

低速シャッター
動きを表現

絞りの効果

絞り開く
(F/2.0)

絞り絞る
(F/11)

ストロボの効果

ストロボ使用
ストロボを使わず雰囲気を出す

④フレーミング（切り取り方）

- 撮りたいものを真中に
- 黄金比
- 水平線は1/3に
- 背景に気をつけて
 （頭から電柱、首切り、ゴミなどなど）
⑤ピント合わせ

- ピンぼけに注意
- AFを使うとよい（最近はあたり前）
- ポートレートは目にピント
- 集合写真では前にピント（前ボケは目立つ）

⑥手ブレしないよう

- 手ブレに注意（低速シャッター時）
- 構え方、両手しっかり
 （手持ちでは1/15秒くらいが限界）
- ブレ補正機能は効果大
- 三脚を使う
- 一脚使う

⑦シャッタータイミング

- チャンスを狙え
 （タイムラグに注意、特にコンパクトデジカメ）
- 数で勝負
 （撮りまくる、高速連写）
- よいい光線状態
 （ポートレートには磨り）

4. 写真の撮り方
写真を撮るときの7要素（復習）

①被写体（何を撮りたいか）—目的を持って
②レンズ—目的に合ったレンズ
③絞りとシャッター速度—目的に合った組み合わせ
④フレーミング（切り取り方）—目的を美しく強調
⑤ピント—ちゃんと合わせる
⑥手ブレさせない
⑦シャッタータイミング—狙った瞬間を
5. 自然観察写真お役立ち

- 目で見えるものは、たいがい写る。
- 虹でもオーロラでもホタルでも望遠鏡でもテレビでも水中でも
 ①マクロ撮影
 ②接眼レンズを通しての撮影
 ③広角レンズでの撮影
 ④望遠レンズでの撮影
 ⑤暗い被写体の撮影
 ⑥水面からの反射光を抑える
 ⑦水中撮影
 ⑧注意すること
①マクロ撮影（本格派）
・一眼レフ＋専用のマクロレンズを使う
・とても近いところまできれいに撮れるレンズ
・通常30cmまで → 15cm
・近いものは大きく写る、顕微鏡的な写真
・ピントが合う範囲が浅くなる

①マクロ撮影（クローズアップ）
・一眼レフ＋通常レンズ＋クローズアップレンズ
・ピントの合う範囲が近距離にシフト
・専用レンズより性能は落ちる

①マクロ撮影（マクロモード）
・コンパクトカメラのマクロモード
・ピントの合う範囲が近距離にシフト
・マクロモードとスーパーマクロモード
・専用レンズより性能が落ちる

①マクロ撮影（デジタル顕微鏡）
・顕微鏡のデジカメ版
・オリンパスMIC－D、残念ながら生産中止

②接眼レンズを通しての撮影
・顕微鏡、双眼鏡、望遠鏡の接眼レンズ
・そこに見える映像はカメラで撮れる？
・あたかも1m先に物があるように見える状態
・射出瞳は15mmが多い

オリンパス MIC－D ピクセン マイクロスコープ PC-600
②接眼レンズを通しての撮影

普通のデジカメだと
うまくやれば

③広角レンズでの撮影

・広い範囲（視野角）を撮影できる。
・虹（水平85°ある）18mm以下のレンズ必要
・オーロラも

④望遠レンズでの撮影

・遠くのものを大きく撮影できる。
・野鳥や野生動物、太陽や月
・レンズが長い

⑤暗い被写体の撮影

ホタルの群遊
⑤暗い被写体の撮影

海ホタルと発光実験

⑤暗い被写体の撮影

- 長時間露光（60秒等）を使う
- 三脚必須
- ビントはマニュアル
- レンズに覆ってシャッターのかわりに

⑥水面からの反射光を抑える

通常撮影

偏光フィルター使用

- 水面やガラスからの反射光をカットするために
 偏光フィルターが効果大
- 約60°反射光で効果最大となる

⑦水中撮影

水中ハウジング

- ヘビーデューティーコンパクト

水中

⑦水中撮影

水中

水族館も

⑧注意すること

- 電池切れ（予備電池、寒冷地はカイロ）
- メモリー切れ（予備メモリー）
- 手ブレ注意、三脚は強い武器
- カメラをぬらしたり、落とさないこと
実験工作

顕微鏡
香野 淳 福岡大学理学部 ... 25

エレクトロ万華鏡
原 一広 九州大学大学院工学研究院 27

光を分解してみよう
永田 潔文 福岡大学理学部 ... 33

明るさを測ってみよう
赤星 信 福岡大学理学部 ... 37
顕微鏡
(工作と観察)

[内容]
ポケットに入れられるサイズの1レンズの顕微鏡を作って、さまざまな物を観察する。
観察するものとしては、ティッシュ、玉ねぎの皮、塩の結晶、虫など。
薄い方が明るく見える。

[工作]
材料
・球レンズ（今回は直径約2mmのガラスビーズを使用）
・黒い発泡エンビ板（レンズ取り付け用）、大きさ3mm×8mm程度

(*）エンビ板やアクリル板でも代用できるが、やわらかい方がレンズを取り付けやすい
・透明なアクリル板（観察試料取り付け用）、大きさ3mm×8mm程度
・OHPシート（観察試料のカバー）、観察試料を押さえられる大きさ〜2.5mm角くらい
・化粧ネジ（フォーカス調整用）
・セロテープ

道具
・ハサミ
・やわらかい布、やわらかい薄手の手袋（ドライバー手袋くらいが使いやすい）

工作手順
1. レンズを取り付けるための黒い発泡エンビ板を大きさ3mm×8mm程度に切る。

2. 黒い発泡エンビ板の中央附近に球レンズを取り付けるための穴をあける（写真1）。ここでは穴の直径は1.8mmとして、やすりなどで微調整した。

3. 2でえた穴に球レンズを入れる（写真2）。レンズに汚れがつかないように、白手袋などを手にはめてさわる。

4. やわらかい布、白手袋などをあてて、レンズを板に押し込みます（写真3）。このとき、レンズが板から少し出た状態のところでとめる（レンズが完全に入ってしまわないように注意）。
5. 観察する試料を取り付けるための透明アクリル板を
大きさ3mm×8mm程度に切る（レンズ取り付け板
と同じ大きさ）。

6. 透明なアクリル板の端から5mm程度の位置に穴を
あけ、化粧ネジを取り付ける（写真4）。

7. 透明アクリル板の真中に観察したい試料をのせて、透明OHPシート（写真5）をかぶせて、試料が
動かないようにセロテープでシートの端をとめる（写真6）。試料は
ネジの先が出ている側につけること。

8. レンズのついた黒い発泡エンビ板と試料を取り付けた透明アクリル板の端をセロテープで
とめて完成！黒い板のレンズの出た側と、透明板の試料がついた側（ネジの先が出た側）が
向き合うようにすること。（写真7）

9. 黒い板の側からレンズをのぞき、像がはっきりと観察
されるように、ネジを回して調整しよう（フォーカスシング）。

（＊）注意：絶対に太陽を直接見ないこと。

【観察例】

－ティッシュペーパーの繊維
（実際にはインクが染まっている
様子も観察できます）
エレクトロ万華鏡

ピカピカと色がかわる発光ダイオードと
虹色フィルムをつかって
電気じかけの万華鏡を作ろう。

用意するもの

ピカピカと色がかわる発光ダイオード
電池ボックスと導線
虹色フィルム2枚（2次元回折格子）
紙コップ2個分の長さ
黒い長方形の紙
紙コップの底より少し小さい黒い正方形の紙
虹色フィルム（2次元回折格子）

目に見えない小さなはばで、まっすぐな線が規則正しく前後左右にひかれています。
こうすると光を虹のように前後左右に分ける事ができるようになります。

虹色フィルム
（2次元回折格子）
つくり方

1. 3つの紙コップの底の中心に直径1cmの穴、もう1つの紙コップの底の中心に千枚通して小さな穴をあけます。

2. 2つの紙コップの直径1cmの穴に、「虹色フィルム（2次元回折格子）」をセロテープで貼りつけます。また残りの2つの底から1cmくらいまでの部分をポスターカラーで黒く塗ります。

3. 電池ボックスのコードと「ピカピカ色がかわる発光ダイオード」をハンダ付けします。この時に、電池ボックスと「ピカピカ色がかわる発光ダイオード」の極性を間違えないように気をつけてください。
4. スイッチのついていない電池ボックスの面に両面テープを貼ります。そして、両面テープの裏紙をはがして、電池ボックスを小さな穴のあいた紙コップにしっかり固定します。

5. 紙コップの小さな穴に「ピカピカと色がかわる発光ダイオード」の頭を入れます。これで発光部の完成です。
6. 小さな正方形の黒い紙の中心に好きな形の小さな穴をあけて、直径1cmの穴をあけた残りの1/2この紙コップの底につけます。

7. 黒い長方形の紙を縦長に巻き、紙コップの底と同じ径の筒を作ります。

8. 「虹色フィルム（2次元回折格子）」を貼った紙コップと黒い紙を貼った紙コップを黒い紙の筒の中に入れて貼り合わせます。
9. 貼りあわせた紙コップの「虹色フィルム（2次元回折格子）」を貼った方
にもう1つの「虹色フィルム（2次元回折格子）」を貼った紙コップを重
ねて、黒い紙を貼った方に「ピカピカと色がかわる発光ダイオード」
をつけた紙コップを入れます。

10. これで出来上がりです。「ピカピカと色がかわる発光ダイオード」を
光らせ、右側の「虹色のフィルム（2次元回折格子）」を貼った紙コッ
フの方からのぞいて見つけてください。右側の紙コップをまわすと模様が
かわります。
光を分解してみよう
（工作と観察・実験）
福岡大学理学部 永田 澪文

内容
回折格子フィルムを使った分光器を作り、光源の光を分解して、光源の光がどのような色の光から構成されているか（光のスペクトル）を調べてみる。このことから次のがわかる。
①一般に、光源の光は色々の光から構成されている。
②光源によって、構成される色やその強さが異なる。
③したがって、光源の光を分解することで、光源の種類を調べることができる。
低学年は、回折格子フィルムを使ったメガネ（分光メガネ）を作り、光源の光を分解して遊んでみる。
物質に白色光を当て、物質を通ってきた光を分光器で分解し、物質によって吸収される光を調べてみる。このことから、物質によって、異なる光を吸収することがわかる。

光について
目で見える光（可視光）は電磁波の一種で、波長が約 0.4 μm から 0.8 μm の間にあら電磁波である。色は波長によって異なり、波長が長い方から順に、赤、橙、黄、緑、青、蓝、紫（紫の順番）となる。1つの波長からなる光を単色光といい、太陽からの光のように色々の波長の光を含み、色がつかず白色に見える光を白色光という。
人間の目には、赤、緑、青（光の3原色）に感じず物の細胞があり、光に含まれる3原色の割合の違いによって、人は種々の色を見分けている。全ての光が含まれると白色になり、全ての光がないと真っ黒になる。カーテン・テレビやカラーモニターは、この3原色を組み合わせて、種々の色を作り出している。赤と緑で黄が作られ、緑と青で水色などが作られる。
一方、光を出さない物体の色は、物体内からの反射光に含まれる3原色の割合で決まる。白色光を物体に当てたとき、青が吸収されると青に見え、緑が吸収されると赤に見える。全色が反射されると白になり、全色が吸収されると黒になる。緑の具や服の色は光を吸収する物質を混ぜることで作られる。吸収により色を作るとき、緑の具の3原色は、イエロー（黄）、マゼンタ（赤紫）、シアン（緑青）となり、光の3原色とやや異なる。
白色光が光の光からなることを研究したのは、ニュートンである。ニュートンはプリズムを使って光を分けた（分光）。その後、この分光という手法を使った学問が大いに発展し、物質や原子の構造ならびに性質を明らかにするのに使われたり、光通信を含む太陽系以外の惑星に生命があるかどうかを確かめることにも使われている。
回折格子フィルムについて

手の指のすきまから明るい光を見ると、光が左右に広がって見える。またハンカチなど纖維が格子状になった布を通じて街灯や小さな光源を見ると格子状に光が見える。回折はこのような現象のことで、屈折でも反射でなく、光が直進光路からずれる現象を言う。
回折の現象を利用したものに回折格子（細いすきま [スリット] を等間隔にたくさん並べた物）がある。これもプリズムと同様に光を分けることができる。似た音葉に干渉があるが、スリットの数が少ないときの現象を干渉といい、スリットの数が多い（穴が開いたような無限にスリットがある場合も含む）ときの現象を回折ということが多い。
理科の実験で、書はプリズムを使って分光していたが、最近は回折格子フィルムを安価で手に入ることができるようになったので、分光にはこの回折格子を使うことが多いなった。回折格子としてここに使用する透明フィルム以外に、ミラー型の回折格子であるプログラムシート（自動車の窓ガラスに張るタイプや携帯電話の装飾に使うタイプ）も市販されている。またコンパクトディスク（CD）を利用した実験方法も、ネット上で多数見られる。「工作」、「光」、「分光」などのキーワードで探すと良い。

工作
1）分光器

材料
角紙管（無印良品で売っている） 1本
穴の開いた厚紙 2枚
回折格子フィルム（1000本/mm）（約2cm×2cm） 1枚
0.3mm厚の真ちゅう板（1cm×2cm） 2枚
アルミテープ（幅5cm、長さ18cm） 2枚

道具
セロテープとテープカッター
はさみ
鉛筆

作り方
①穴の開いた厚紙の両面に、1つの辺と平行に鉛筆で線を1本引く。線の方向は同じにする。回折格子フィルムには上下と左右がある。フィルムが曲がる方向が左右である。
回折格子フィルムの上下方向が鉛筆で書いた線と同じ方向になるように、回折格子フィルムを厚紙にセロテープで固定する。
②もう1枚の穴の開いた厚紙に、2枚の真ちゅう板を貼り付けてスリット（細長い隙間を作る。真ちゅう板の間隔は、0.5mm程度（真ちゅう板の厚さと同じ程度）にする。真ちゅう板の固定はセロテープで行う。

③回折格子をはった厚紙（①で作成）と、スリットを作った厚紙（②で作成）を角紙管の両端にセロテープで固定する。このとき、①で作成した厚紙に鉛筆で書いた線とスリットの方向を同じにする。光が漏れないように、厚紙と角紙管をアルミテープで固定する。

2）分光メガネ

材料
回折格子フィルム（約12cm×3cm）1枚
めがね用の厚紙

道具
はさみ

作り方
①厚紙からメガネを切り取る。
②メガネの穴を切り取る。
③メガネの裏側に回折格子フィルムをはりつける。フィルムの周りの適当なところをセロテープで止め、フィルムがはみ出たところは、切り取る。
観察・実験
いろいろの光源を、分光器や分光メガネで、見てみよう。

分光器でスペクトルを見るには、多少慣れとコツが必要。筒は光源の方向に向け、目は左の方を見るとよい。光源は明るい方が見やすい。また分光メガネの場合、光源は小さい方が明るいので、光源が大きいときは、厚紙に小さな穴をあけ、その穴を通してみるといよい。レーザーポインターは見えない。失明の恐れがある。
1）電球。懐中電灯や白熱灯でもよい。連続スペクトルが見える。
2）蛍光灯。電球を見た時と同じような連続スペクトル以外が明るい線（輝線）が見える。
3）水銀灯。蛍光灯の輝線が、水銀からの光であることが分かる。
4）その他の放電管。水素、ヘリウム、ネオン、ナトリウム。これらは何本かの輝線からなる。
5）各種ダイオード。
6）夜、機会があったら、町にあふれる色々の光を見てみよう。外灯やトンネルの中の黄色の光など、どんな光があるか調べてみよう。ただし、歩きながらの観察は交通事故にあうので、必ず安全な場所に立ち止まって観察しよう。
7）液晶テレビや携帯電話のバックライトが、何であるか調べてみよう。

物による光の吸収を、分光器で見てみよう（吸収スペクトル）
1）いろいろのセロファンを通して蛍光灯を見てみよう。どんな色が失われているか、観察してみよう。
2）太陽の光（太陽を見なけでも良い。太陽の近くの雲や青空で良い。また決してメガネで見てはいけない。スリットの幅が狭い（0.3mm）分光器で観察する。またまた太陽を凝視しない。スペクトルだけを見るようにする。）。フランフォーファー線とよられる、黒い線（吸収線）がみられる。フランフォーファー線は、太陽表面や地球大気にある原子や分子によって吸収された吸収線である。それから、太陽表面や地球大気にある原子や分子の種類や状態がわかる。

写真で記録
デジカメや携帯電話で、光源のスペクトルを記録する。三脚に固定して撮るとよい。
明るさを測ってみよう
光を感じて針が振れるメーター

このメーターは直流回路と方位磁石で構成されています。直流回路はCdSセルとコイルとスイッチと電池からなり、方位磁石はコイルの中に置きます。電流が流れるとときにコイルの中にできる磁界が東西方向に向きようにコイルを置きます。

CdSセルは光が当たると電気抵抗が小さくなる電気素子で、光が強いほど抵抗は小さくなります。光が強いほどコイルを流れる電流は大きくなり、磁界も強くなって、磁針が大きく振れます。

材料
① CdSセル 1個
② 割り箸 1膳
③ スイッチ 1個
④ 単三乾電池 1個
⑤ 配線用導線 少々
⑥ コイル用導線 約10m
⑦ 厚紙（コイル枠用） 少々
⑧ 方位磁石（オイル入り） 1個
⑨ セロハンテープ 少々

道具
① カッター
② カッティングマット
③ 定規
④ セロハンテープカッター

直流回路
安全の指針

リフレッシュ理科教室実行委員会

一般的な注意

普段からやっていることなので大丈夫と思いがちなことが、事故につながる可能性があります。大勢の不特定多数の来場者があり、その多くが子供たちであることを考えると、子供の興味関心に応じて予期しない行動をとることを考慮した細心の注意が必要です。また、初心者がおちいりやすいミスを洗い出すために、事前に十分な予備実験が必要です。

事故が起こった場合の対応

万が一の場合、次のような対応をすること。

・事故が起こったら、大声でとなりの教室や補助員に知らせること。

・近隣の教室では、実験を中止し、補助員と協力して緊急処置を行うこと。
 やけどの場合は、水道水などで冷やす。
 外傷の場合は、ガーゼなどで止血する。
 目に薬品が入ったときには、すぐに水道水などで洗う。

・補助員などはただちに実行委員会本部、少年科学文化会館(少文館)事務へ連絡する。

・避難が必要なときは、少文館職員や補助員などが、来場者を誘導する。

・少文館の判断により、必要なときには救急車を手配する。
講 師 プロフィー ル

平井正則（ひらいまさのり）先生

1943年9月 大分県に生る。
九州大学理学部物理学科卒業後、東京大学理学系研究科修士・博士課程修了（理学博士）
1974年 福岡教育大学着任講師・助教授を経て1988年教授
2007年3月33年間勤務の福岡教育大学定年退職
2007年 福岡教育大学名誉教授
専門「低温度星の分光学的研究」ほか、天文学史・天文教育
日本天文学会・日本理科教育学会に所属
国際天文連合（IAU）第29分科会（Stellar Spectra）・第41分科会（History of Astronomy）会員・東洋天文学史国際会議会員（ICOA）

2003年 国際天文連合小惑星センターより小惑星9333を「ひらいまさ（HIRAIMASA）」と命名される。
1986年 米国カリフォルニア大学サンタクルーズ校（UC,SantaCruz）リック天文台客員研究員
1988年 秋・東洋天文学史国際会議福岡（ICOA-3,Fukuoka）主宰
2004年8月 環境庁「青空の街・あおぞらの街」全国協議会会長賞「すばる賞」受賞

福岡県立青少年科学館プラネタリウム企画企画委員
むなかた電子博物館「北斗の水くみ写真展」実行委員長

樋田博文（つちだひろふみ）先生

オリンパス株式会社 研究開発センター
研究開発本部 光学技術部部長 工学博士

1958年、岡山県生まれ。大阪大学工学部応用物理学科、同大学院修了。
1984年、オリンパス入社。カメラや顕微鏡のレンズを設計。約10年前、低分散GRIN（Gradient Index 分布屈折率）レンズを開発。
2004年に発表された携帯電話向けの新方式の小型レンズ「自由曲面ブリズム方式光学系」の開発を指揮してきた。
ボランティアで「オリンパスわくわくPI」を発足して、推進。
2003年より、3ヶ月に1度のペースで勤務地である八王子市の中学生を対象に、科学の面白さを伝える教室を開き、活動している。
2008年、文部科学大臣表彰「科学技術賞」理解増進部門受賞。
応用物理学会 教育・公益事業委員長
渡辺 和雄 東北大学大学院・教授
応用物理学会 九州支部長
藤山 寛 長崎大学大学院生産科学研究科・教授

「リフレッシュ理科教室」実行委員会
平松 信康 福岡大学理学部物理科学科・教授
岡田 龍雄 九州大学大学院システム情報科学研究科・教授
白谷 正治 九州大学大学院システム情報科学研究科・教授
木須 隆義 九州大学大学院電気電子工学部門・教授
原 一広 九州大学大学院工学研究院・教授
古屋 謙治 九州大学大学院総合理工学研究院・准教授
吉武 剛 九州大学大学院総合理工学研究院・准教授
矢山 豊樹 九州大学大学院理学研究院物理部門・准教授
永田 稔文 福岡大学理学部物理科学科・教授
西田 昭彦 福岡大学理学部物理科学科・教授
赤星 信 福岡大学理学部物理科学科・准教授
香野 深治 福岡大学理学部物理科学科・准教授
寺田 徹 福岡大学理学部物理科学科・教授
木下 俊信 花畑中学校・教諭
古川 起子 花畑中学校・教諭
大野 華代 香椎第3中学校・教諭
谷 友雄 筑岡小学校・校長
大村 健二 若久小学校・校長 福岡市小学校理科研究会会長
吉井 道行 弘光西小学校・校長 福岡市小学校理科研究委員会委員長
奥本 晃 福岡中央特別支援学校・校長
保津 池一 東住吉小学校・教諭
松崎 洋一 東隅小学校・教諭
久保田 修生 西花畑小学校・教諭
真子 英幸 若久小学校・教諭
杉原 賢太郎 住吉小学校・教諭
永田 裕二 筑松小学校・教諭
福原 智恵子 博多小学校・教諭
浜野 貞治 博多小学校・教諭
荒木 星実 青葉小学校・教諭
瀬戸 一志 福岡市立少年科学文化会館・館長
内野 保基 福岡市立少年科学文化会館・学芸係長
津村 道幸 福岡市立少年科学文化会館・指導主事

顧問
友澤 彰穂 九州大学・名誉教授
近浦 吉則 九州工業大学工学部物質工学科・教授
日高 晃昌 中村学園大学人間発達学部人間発達学科
野口 徹 福岡市博物館企画管理部長

運営にご協力をいただいた方々
宮本 正治 福岡大学理学部物理科学科
中村 忠嗣 福岡大学理学部物理科学科
田尻 恭之 福岡大学理学部物理科学科
Notice about photocopying

In order to photocopy any work from this publication, you or your organization must obtain permission from the following organization which has been delegated for copyright for clearance by the copyright owner of this publication.

In the USA
Copyright Clearance Center, Inc.
222 Rosewood Drive, Danvers, MA 01923, USA
Phone: (978)750–8400, FAX: (978)750–4744
www.copyright.com

Except in the USA
Japan Academic Association for Clearance (JAACC)
6–41 Akasaka 9-chome, Minato-ku, Tokyo 107–0052,
Japan