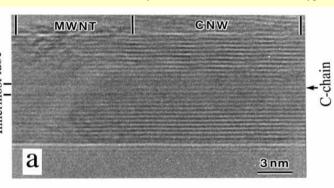
文部科学省 21世紀COEプログラム 2002 - 2007 電気電子·情報分野

名城大学 「ナノファクトリー」

理工学部 材料機能工学科 ナノ材料研究室 安藤義則教授

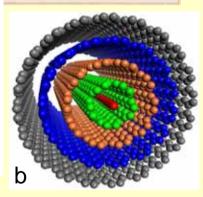
vando@ccmfs.meijo-u.ac.jp

多層カーボンナノチューブ(MWNT)の作製


MWNTは、1991年に本学 理工学部 飯島澄男教授(当時NEC)によって発見された。その発見 のもとになった試料そのものは、左下図のような直流アーク放電装置で、フラーレン(C60など) を大量作製したとき、陰極上に堆積した副産物として安藤研究室で得られていた。その意味で、 「名城大学はカーボンナノチューブ発祥の地である」と言える。

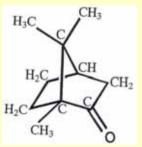
アーク放電法

0.1気圧の純粋なH₂ガス中で 純粋な黒鉛棒をアーク蒸発

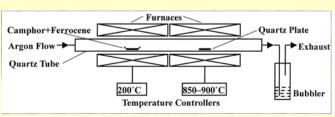


1本のMWNTのHRTEM像

カーボンナノワイヤの(a)HRTEM像と(b)モデル 1ナノメートル= 1nm = 10^{-9} m = 10



装置の模式図


直流アーク放電

熱CVD法

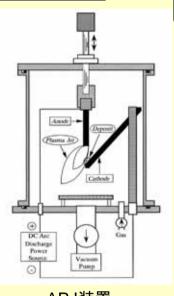
樟脳(ショウノウ)を炭素源とする 熱CVD法によるMWNTの作製

ショウノウ C₁₀H₁₆O

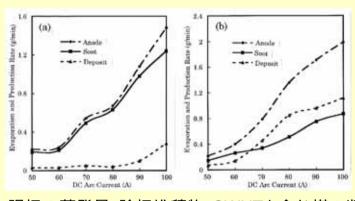
二つの電気炉を用いた熱CVD装置 低温側でショウノウを蒸発、高温側でMWNT生成

Si基板上に垂直に配列したMWNT のSEM像:スケールバーは100 µm

単層カーボンナノチューブ(SWNT)の作製


直流アーク放電法でSWNTを作製するときは、MWNTの場合とは違って、適当な金属触媒(たとえば、Fe、Ni、Coなど)を含む黒鉛電極を蒸発させる必要がある。

しかも、陰極堆積物の中にはSWNTは存在しなく、真空容器の中全体にくもの巣状にできる堆積物の中にSWNTは含まれている。

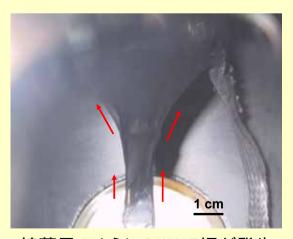


SWNTの原子モデル

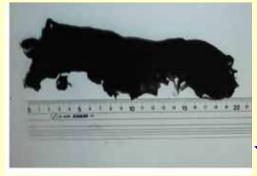
APJ法

電極を30度の鋭角に配置し てアーク放電蒸発を行う

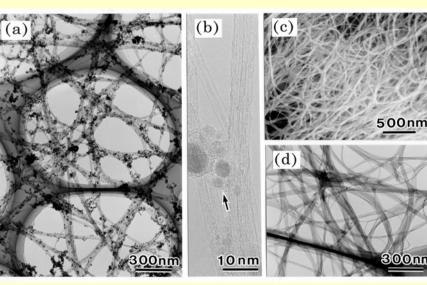
APJ法で作製したSWNT のSEM像

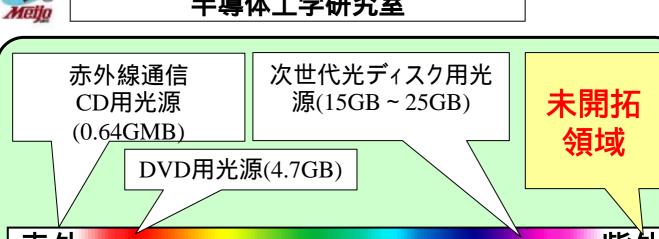

SWNTs

陽極の蒸発量·陰極堆積物·SWNTを含む煤の収率 (a)電極30度配置のAPJ法 (b) 通常のアーク法


APJ装置

FH-アーク法


Fe入り黒鉛電極をH₂+Ar 混合ガス中でアーク蒸発


綿菓子のようにSWNT網が発生

1以の容器に入れたSWNT 質量はわずかに1グラム

SWNTのTEM像とSEM像 (a)(b) 精製前、(c)(d) 精製後 > SWNT膜

赤外

紫外

AlGaInP

AlGaInN

窒化物半導体

赤外から赤~紫の可視光域、紫外まで発光可能 究極の半導体!!

応用例

信号機 照明用 携帯のバックライト

LEDとは


発光ダイオード (Light Emitting Diode)

電流を流すことで発光する素子

材料によって光る色が変わる

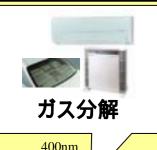
青色LEDチップ 9個分



写真の回路の 部分に いろんな色の光をあてて 見ましょう。 ある光の時だけ赤く光り ます。

この部分には、フォトダイオードがついてます。

紫外発光ダイオードの特徴

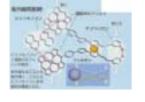


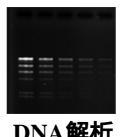
紫外線 蛍光

白色光

紫外LEDは、紫外線を 発光します。その光を 蛍光体に当てると様々な 色が得られます。

紫外領域の応用


皮膚病治療


レーザナイフ 200 n m

320

UV B

分子ピンセット

280nm

DNA解析

100nm